
,V- -

NAVWEPS REPORT 8044
NOTS TP 3038oCOPY 3 8

410072
NELIAC PROGRAMMING PRIMER FOR U-490

by

Dean W. Lawrence

.7,p Underwater Ordnance Department 77'

G

ABSTRACT. This report serves as n introduction
to computer programming in the NE LIAC language.
Specifically, it is oriented toward the UNIVAC-490
digital computer, a facility of the Naval Ordnance
Test Station. The language is precisely designed
to translate scientific problems into coding accept-
able to the machine. The resulting information is
useful in the design and development of antisub-
marine weapons.

* ~ U.S. NAVAL ORDNANCE TEST STATION

China Lake, California

May 1963

U. 0. NAVAl OR D NAN E TO OT STATI O N

AN ACTIVITY OF THE BUREAU OF NAVAL WEAPONS

C. BLENMAN, JR., CAPT., USN Wm. B. McLEAN, PH.D.
Commnder Technical Director

FOREWORD

The UNIVAC-490 digital computer facility was originally installed at
the Naval Ordnance Test Station to generate simulated acoustic echoes
and other acoustic phenomena for a torpedo in real time.

In addition, it is also used as a general-purpose scientific tool to
solve such problems as the effective size for a warhead, the strategy
of weapon placement, and the solving of equations of motion.

The cooperation of the Navy Electronics Laboratory was sought in
order to extend the usefulness of the UNIVAC-490 by incorporating the
algorithmic language of NELIAC, the Navy Electronics Laboratory
International Algol Compiler.

The computer was installed in April 1962. This report is the result
of work done in Fiscal Year 1963 under Local Project 802. The report
represents the considered opinions of the Torpedo Development Divi-
sion and the Guidance and Control Division.

Released by Under authority of
C. G. BEATTY, Head, D. J. WILCOX, Head,
Torpedo Development Division Underwater Ordnance
A. J. TICKNER, Head, Department
Guidance and Control Division
12 April 1963

NOTS Technical Publication 3038
NAVWEPS Report 8044

Published by Underwater Ordnance Department
Manuscript P 0/MS- 86
Collation Cover, ZZ leaves, abstract cards
First printing 270 numbered copies
Security classification UNCLASSIFIED

NAVWEPS REPORT 8044

CONTENTS

Introduction .. I

Concepts of NELIAC .. 2
Definition of Terms ... 2
CO-NO Table ... 3
Legal Names and Numbers 4
Use of Comments ... 6
Redundant Words 6
Nam e List .. 6

Writing the Dimension Statement 7
Allocation of Storage .. 8
Specification of Cell Contents 9

Writing the Flowchart Logic 11
Subscripting ... 11
Arithmetic Operations 12
Loops ... 13
Transfer Points . .. 14
Decision-M ak.ng ... 15
Subroutine s . .. 16
Use of Subroutines .. 18
M achine Code .. 19

Generation of Output on the High-Speed Printer 19
The Format .. 19
Field Specification ... 20
Miscellaneous Information 22
The Noun List ... 23

Available General-Purpose Subroutines 23
Open Subroutines 23
Closed Functions 23

Appendixes:
A. CO-NO Table 25
B. Exercises .. 26
C. NELIAC Internal Code 36
D. Review of Punctuation 37
E. Debugging Aids Available From the NELIAC Compiler 39
F. Initial NOTS Configuration of the U-490 41

iii

NAVWEPS REPORT 8044

ACKNOWLEDGMENT

The author is indebted to A. E. Lemay, LTJG,
USNR, of the Navy Electronics Laboratory, San Diego,
for his suggestions and corrections to the original
manuscript.

iv

NAVWEPS REPORT 8044

INTRODUCTION

To write a program for a digital computer, the programmer must
be able to communicate with the machine. This communication must
be through numbers-the only language the machine can understand.
Since the programmer has probably seldom used numbers as a means
of communication, a serious handicap exists between man and his
machine.

The first attempt to remedy this problem was the development of
assembly programs, which are still widely used. These allowed the
programmer to designate cells of storage and give the computer its
operations in mnemonic terms.

However,the programmer still faced the task of serially program-
ming each of the computer's various operations. For this reason,
compilers were developed to accept the language of the program and
translate it into numbers comprehensible to the machine. NELIAC,
the compiler that is available on the UNIVAC 490, is one of many such
languages. This report describes the rules, methods, and techniques
of programming NELIAC. It is primarily a guide to the learning of
the language, although it is hoped that it will serve as an adequate
reference for NELIAC programmers.

The name NELIAC stfnds for Navy Electronics Laboratory Inter-
national Algol Compiler. The Afgol language concept was forriTed
about 5 years ago. Its primary purpose was to standardize the coding
of scientific problems on computers and thereby eliminate all the
existing languages and dialects that were common to only a few com-
puters. It was to be a language, oriented to the solution of problems
by numerical algorithms, that would be acceptable to any and all
scientific computers.

What has since happened to Algol, as the language was later named,
is academic. The various users' groups and committees still have not
specified the language completely, nor have they eliminated all the am-
biguities. For this reason, it was necessary for NEL personnel, under
the direction of Dr. Halstead, to form their own dialect of the language
when they were given the task of preparing a compiler for the Navy
Tactical Data System (NTDS) service test computer. Today the language
is representative of the state of the art of Algol.

I A complete discussion of NELIAC compilers can be found in

Machine-Independent Computer Programming, by Maurice H. Halstead,
published by Spartan Books, Washington, 196Z.

NAVWEPS REPORT 8044

The foremost reason for the selection of NELIAC for the NOTS com-
puter is that the UNIVAC-490 (U-490) is a refined version of the NTDS
service test computer. Hence, a great deal of the work was eliminated
by the selection of NELIAC.

CONCEPTS OF NELIAC

An algorithmic compiler is by definition one that translates a nu-
merical algorithm into the language of the machine. When a program-
mer has solved a problem mathematically (Step 1) he needs only to
develop a computational algorithm (Step 2), record it on a paper tape
or a card punch (Step 3), and load it into the machine to get a solution
(Step 4). This may seem to be an oversimplification to the experienced
programmer, but in reality it closely parallels the exact coding proc-
ess. Although there are certain restrictions to the language and forms
to be followed, they are problem-oriented.

Of the four steps, only the second requires a knowledge of NELIAC.
The rest of this report, therefore, concerns only the methodology of the
language.

DEFINITION OF TERMS

A flowchart is the source language program. It may vary in nature
from the handling of the entire problem to doing absolutely nothing in
terms of machine operations. There is no restriction on how many
flowcharts may comprise the program.

The term noun refers to the name of a quantity, either variable or
constant, such as -- eigenvalue of matrix A-- or -- coefficient of
friction--, while verb denotes the name of a routine or a subroutine
performing some operation, e. g. , -- sin-- or -- find eigenvalue of
matrix A-- .2 Neither nouns nor verbs need to be defined before they
are used, with some exceptions, defined under Name List, below, so
long as their definition exists in some flowchart.

An operator is any one of the 25 allowable NELIAC characters that
are neither numeric nor alphabetic.

The flowchart can be generalized in the following manner:

2 Double dashes denote variable names used in examples.

2

NAVWEPS REPORT 8044

carriage return
lower case
5

carriage return
DIMENSION STATEMENT (may be omitted)

name of the routine: (may be omitted)
FLOWCHART LOGIC (may be omitted)
.. (stop code)

The "5" signals the compiler that the flowchart is to be compiled.
(It must be remembered that the "5" can perform additional functions
with regard to flowcharts.)

The DIMENSION STATEMENT is the definition of all nouns used in
the flowchart logic that have not been or will not be defined in another
flowchart.

The semicolon defines the end of the dimension statement and the
beginning of the flowchart logic. Thus, if no dimension statement were
necessary in a particular flowchart, it would still be necessary to pre-
cede the logic with a semicolon. Similarly, if no logic were necessary,
a semicolon would still have to follow the dimension statement.

The name of the routine is the definition of a verb. The routine
must perform some sort of operation and even if it is not necessary to
refer to this operation from another flowchart, it should be given a
name. Otherwise, it may be omitted.

FLOWCHART LOGIC is the algorithm itself.

Regardless of the exclusion of a dimension statement or flowchart
logic, the paper tape must physically end with ".. (stop code)". There
must be only two periods and a stop code, which is a special punch on
the tape.

CO-NO TABLE

The name of each noun is assigned a unique location in memory.
When this noun is operated upon in one way or another, the contents
of this cell will be the numbers involved in the operation. For obvious
reasons, nouns are often referred to as operands.

The symbols signifying operations are the 25 special operator
characters. Although these symbols do not have a unique interpreta-
tion when considered individually (e. g., the equal symbol has two
distinctly different meanings), they form a pairwise uniqueness to the
compiler that is the essence of the concept of a Current-Operator -
Next-Operator (CO-NO) table. For a simple explanation, the com-
piler reads a current operator, an operand (noun), and a next operator.
This CO-NO combination tells the compiler to set up the specific CO-
NO function on the operand. Once this is done, the CO and the operand
are discarded, the NO becomes the new CO, and a new operand and NO
are then read into the translator.

3

NAVWEPS REPORT 8044

A pictorial representation of the CO-NO table and its function may
be found in Appendix A. As operator techniques are developed in later
sections, this Appendix will become more and more significant to those
who wish to answer their own questions concerning the legality and
necessity of certain CO-NO combinations.

The following example demonstrates the compiler's use of the CO-
NO table.

EXAMPLE (The Symbol - Means "Placed Into.")

Flowchart CR
LC
5
CR
X, GZZORK

STORE EXAMPLE:

x - gzzork, . . (stop code)

STEP CO OPERAND NO FUNCTION

1 (CR) x , Select a cell for the value of
X.

2 GZZORK Select a cell for the value of
GZZORK and switch to com-
piler flow-chart logic.

3 STORE EXAMPLE Select a starting cell for the
routine STORE EXAMPLE.

4 x - Put x in the Q register.

5 - GZZORK Store the Q in the location of
GZZORK.

6 Do nothing.

7 End.

Note that the compiler does not distinguish upper-case from lower-
case letters and that the comma preceding the double period is of no
consequence since it forms a do-nothing function. This example is
purely demonstrative and should not be taken as the precise method of
the compiler.

LEGAL NAMES AND NUMBERS

The name of any noun or verb must begin with a letter that may be
followed by any combination of letters and/or numbers. The compiler
associates the index registers Bl, B2, B3, B4, B5, and B6 with the
letters i, j, k, 1, m, and n, respectively. To use index register BZ,
the programmer should use the name -- j--. It is, therefore, illegal
to dimension a variable named "ill or "jl, etc.

4

NAVWEPS REPORT 8044

The name length may be as long as the programmer desires, al-
though the first 15 characters (excluding spaces) must be unique.

In summary, the three cardinal rules of naming nouns and verbs are

1. The first character must be a letter.

2. The letters i, j, k, 1, m, and n may not be used as a complete
name.

3. The first 15 characters, excluding spaces, must be unique, even
though the name can be much longer.

Examples of Legal and Illegal Names

Legal Illegal

A very very long name i
A f(t)

Z96428731B Floating-point number
ij

Examples of Legal Numbers

Numbers may be used in one of two modes.

Fixed Point Example

Octal 7778
Decimal 12345980

Floating Point Example

Normal 3.21
Exponential 4 X I or 62.3 X 19

Since each fixed-point number is composed of 29 bits plus a sign,
they must be less than 229-1 (or 536870911) in magnitude.

Floating point numbers may be of any magnitude the programmer
desires. However, the significant digits of the number must not ex-
ceed 8. These numbers have two storage locations allocated to them:
one for the characteristic (29 bits + sign), the other for the mantissa
(28 bits, overflow, and sign).

Examples of Legal and Illegal Numbers

Legal Reasons

1. 3 X -1 Same as 0.3
2. -338

3. -985.23 X -9

Illegal Reasons

1. 123456712345678 > 229 -1
2.. 231 No leading digit

5

NAVWEPS REPORT 8044

Examples of Legal and Iliegal Numbers (Contd.)

Illegal Reasons

3. 3. No decimal digit
4. 3.6218 Floating-point octal

numbers have no
meaning

5. 3 X 107 10 is understood

USE OF COMMENTS

Frequently it is desirable to insert comments in the flowchart logic
so that the program may be more readable to the programmer. The
form for doing this is

(COMMENT: Any comment of any length)

When the flowchart is loaded into the machine, comments (and also
carriage returns, upper- and lower-case punches, and spaces) are
filtered out so that they cannot influence the compiled program. The
programmer should, therefore, use as many (or as few) of these as
he needs to make the flowchart readable.

REDUNDANT WORDS

One of the requirements specified for NELIAC is that certain words,
insignificant to the compiler, be available to the programmer for in-
sertion for readability at any point in his flowchart. These words are
listed below, with the correct spacing to lie used with them. It is neces-
sary to use precisely the spacing shown ((h) means one blank), so that
the filtering process in the compiler can remove words before compila-
tion begins. Typical usage can be found in examples in later sections.

Gif®
Odo®

G if @ not, G (note the comma, which must appear)
Qgo@to0

NAME LIST

As the compiler reads in the various flowcharts that compose some
specific problem, it forms a table of names called the name list,which
contains all the names of nouns and verbs, together with tei''s'tarting
addresses. During the process of compiling the flowcharts, the com-
piler refers to this list to get the addresses of the operands. To re-
capitulate, the process of forming a machine instruction may be thought
of as looking up the CO-NO combinations in the CO-NO table (to deter-
mine the function code) and the operands in the name list (to determine
the address).

6

NAVWEPS REPORT 8044

The name list is complete only when the last flowchart has been
compiled. Because the list contains the names of all the nouns and
verbs, a name used in the logic of one flowchart may appear in the di-
mension statement of another. In fact, a name may be defined in only
one flowchart, although it may appear in the logic of several others.

The programmer may occasionally want to use some name in one
flowchart in a temporary fashion that prohibits its recognition by other
flowcharts. To do this, an absolute value symbol (1) is placed any-
where after the first and before the 15th letter of the name when it is
defined. In all subsequent appearances, the name should be spelled in
its normal manner.

EXAMPLE

T IEMPORARY NAME (when subsequent reference is made,
it would be spelled -- TEMPORARY NAME--.)

When a name is temporary, it does not become an entry in the name
list, and the compiler has no memory of it once it completes compila-
tion of that particular flowchart.

There are normally two reasons for making a name temporary.

1. The name list has room for 10008 names; programs of sufficient
size may require some names to be temporary so that there will be no
overflow in the name list.

Z. General-purpose subroutines (i. e., those meant for use with
many different programs) require temporary names to avoid double
definition. Examples of this reason may be found in the answer to
Exercise 4 in Appendix B.

Names, normal or temporary, should be defined before they are
used in the flowchart logic. This is not imperative, except in the case
of floating point or partial words, but it does generate better machine
code.

WRITING THE DIMENSION STATEMENT

As explained previously, a dimension statement is the definition of
all nouns. The word definition, as used here, is meant to imply the
p'rocess of assigning a block of storage (one or many cells) to each
name, and placing some initial value in those cells. The initial values
are loaded into these cells onl when the program is physically put into
the machine. It is always wise to set up initial values inside the flow-
chart logic when possible.

The following list of symbols are the characters that may be used
in the dimension statement.

()
,or.: [:]

I (temporary name symbol)

7

NAVWEPS REPORT 8044

ALLOCATION OF STORAGE

() Definition of Length of Variable. A noun is defined when the name
is listed in the dimension statement. It is assumed to have only one
value unless the name is followed by a set of parentheses enclosing a
fixed-point number that specifies the number of locations necessary to
contain all the values of that variable, in which case the initial cell is
referenced as the Oth location.

EXAMPLE 1

Variable name,
Multivalued variable name (20),

In this example, the noun -- variable name-- would have one mem6ry
cell reserved for it, while -- multivalued variable name-- would have
20 cells allocated.

, or . Separators. Each name in the dimension statement must be
followed by a separator. The two separators are the comma or the
period. Commas are generally used but not immediately after a floating-
point variable name.

EXAMPLE 2

a, b (20), c. d (100).

This dimension statement would reserve one cell for -- a--, 20 for
-- b--, one floating-point cell (actually two memory cells) for -- c--,
and 100 floating-point cells (200 cells in all) for -- d--.

: Multiname Definition. It is often desirable to refer to a cell (or
cells) by more than one name. This can be done by following the first
name with a colon and the second name (similarly for a second colon
and a third name, if needed).

EXAMPLE 3

FIRST ARRAY: SECOND ARRAY (100).
a:B :c,

This example would reserve a total of 201 memory cells. The first
200 would be set up as a 100-word, floating-point array that would be
referred to as -- first array-- or -- second array--. The last cell
would be referred to as - -a--, -- b- -, or -- c- -.

((-')) Partial Word Definition. NELIAC has the capability of per-
forming operations on partial words. At any point in the flowchart
logic, the programmer may specify a part of a previously defined
noun, i.e.,

a (2 -" 9)

represents bits 2 through 9 (inclusive) to be operated upon. 3 No other
bit in the word will be disturbed.

3&

In the U-490, the low-order bit is 0, the high-order is 29.

8

NAVWEPS REPORT 8044

This method of bit handling is cumbersome, particularly when the
partial notation must be used many times in the course of the program.
To alleviate this awkwardness, the compiler can recognize a name as
a partial word when it has been defined as such in the dimension state-
ment. The notation for this is

ja (Z -, 9))

When the name -- a-- is used in the logic, only bits 2 through 9 will be
affected. The following example further explains the use of partial
words.

EXAMPLE 4

A: B : 1JUMP FLAG I (1 - 1), JUMP FLAG 0 (0-0),
B UPPER (15- 29), ALOWER (0--14)) (20),

In this example -- JUMP FLAG I-- is the first bit of each -- A-- (or
-- B-- or -- B UPPER--), -- JUMP FLAG 0-- is the 0th bit of each -- A--,
-- B UPPER-- is the 15 most significant bits of -- A--, and -- A LOWER--
designates the 15 least significant bits of each -- A--. Note that only
20 cells are allocated by this dimension statement.

SPECIFICATION OF CELL CONTENTS

Up to this point, the discussion has been centered on the allocation
function of the dimension statement. The remainder of this section will
be devoted to the method of specifying the contents of a name in the di-
mension statement.

= Numerical Values. All variables will be set to zero immediately
before execution of the program unless the name is followed by an
equality symbol and the necessary data values. The comma is used as
a separator between and following the data in all cases. The omission
of one or more pieces of data simply forces zeros into the correspond-
ing memory locations. Example 5 further illustrates these techniques.

EXAMPLE 5 (May Be Considered in the Whole)

Dimension Comment

A. Reserves one floating point
location that initially is 0.

B(3) = 1, Three locations reserved; the
first is set to 1, the other
two to 0.

IC(6-411)1 (2) = 43008, 37008, Places 438 into the 6th to Ilth
bits of first cell of C and 378
in the same bits of the next.

E(5) = 1.2, 4 X 5,, The five locations (floating
3.1, point) of E contain, respec-

tively, 1.2, 400,000, 0.0,
3.1, 0.0.

9

NAVWEPS REPORT 8044

Note that the first numerical value in a list determines the mode of
the variable (i. e., fixed or floating), and that the period is never used
as a separator in or after a list of values.

Ie I Address Switches and Jump Tables. In normal scientific prob-
lems, the programmer is usually interested in the contents of a variable
name and not where the variable is located in memory. However, it is
occasionally necessary to have this information. An address switch
is a variable (one or more cells) that contains the address of ano ter
noun in the lower half of each word in the switch. 4 The notation for
this is

SWITCH I = Ix, y, z,
Thus, -- SWITCH 1-- is a variable name and is allocated three cells in
memory, the first of which contains the address of the variable -- x--,
and successive locations contain the addresses of -- y-- and -- z--. An
address switch may contain as many names of nouns as is desired, and
is, in the case of more than one name, actually a vector of several loca-
tions even though the length is not numerically specified.

A jump table serves the same function for verbs that an address
switch oeas- r nouns, i. e. , a jump table is a name defined to be equal
to the address or addresses of one or more verbs.

EXAMPLE 6

JUMP TABLE 3 = entry point 1, entry point 2),

This example specifies a noun, called -- JUMP TABLE 3--, which is
two cells in length, the first containing the address of the starting loca-
tion of subroutine -- entry point 1-- and the second, the starting loca-
tion of - -entry point 2--.

Caution. Although an address switch and a
jump table are identical in physical appearance,
their translations are different and the two
should never be mixed. That is, names of
nouns and verbs should not be mixed in the ar-
gument of a jump table or an address switch.

[:1 Literals. This is the only method of entering alphanumeric data.

EXAMPLE 7

[TEXT:SOME ALPHANUMERIC INFORMATION. a<B: x- a; y- b;]

The literal begins with the first character after the colon and ends im-
mediately before the right bracket. Any NELIAC symbol may be used
in the literal except the right bracket. All spaces in the literal are

4 For the U-490, bits 18 to 20 contain the k designator appropriate
to the name. By defining -- SWITCH I-- (above) as (SWITCH 1 (0 - 14)),
the possibility of a k-designator malfunction may be eliminated.

10

NAVWEPS REPORT 8044

filtered out except those both preceded and followed by an alphanumeric
character. (Filtering occurs when two or more consecutive spaces are
present).

When the noun -- text-- is used, the address of the literal will be
obtained.

The literal is formed internally as the compiler code (Appendix C),
packed five characters to a word from left to right. A full zero cell
always follows a literal in memory.

WRITING THE FLOWCHART LOGIC

SUBSCRIPTING

Subscripts to variables are denoted by a value enclosed in brackets
following the variable's name, e. g. , A [42].

The subscript itself may be any one of the following three forms:

1. An integer (as above)
2. An index register variable (i, j, n) such as A [i]
3. An index register variable * an integer, such as A [i - 23]

Any variable may be subscripted regardless of its definition in the
dimension statement.

When the subscripting of a partial word field is required, the partial
word notation follows the subscript.

EXAMPLE 8

A[i - 23] (O - 3)

If A has been previously defined as a partial word, bit 0 is the low-
est ordered bit specified in the dimension statement.

Jump tables and address switches are referred to in the logic as
indexed variables.

EXAMPLE 9

Table 3 [i] , Switch 4 [2]

This example designates the ith entry in the jump table or address
switch, named - -Table 3--, and the second entry in - -Switch 4-- (where
the first entry in the table is actually the Oth).

By removing the variable name, subscripts can also be used to
designate absolute locations in memory.

EXAMPLE 10
[i], [249], [i + 12]

This example calls out successively the contents of the cell whose
address is in i, the contents of Cell 249, and the cell whose address is
i + 12. Exercise 2 in Appendix B contains another example of this use
of subscripts.

II

NAVWEPS REPORT 8044

ARITHMETIC OPERATIONS

The six arithmetic operations and their symbols are

1. Storing (-)
2. Addition (+)
3. Subtraction (-)
4. Multiplication (X)
5. Division (/)
6. Left or right shift n places (X 2 T n or / 2 t n)

Arithmetic operations are always shown to the left of the store sym-
bol. The over-all result of any computation must be stored with the
exception of the arithmetic in a decision (see the section below on
Decision Making).

EXAMPLE I Ia

A/B XC - D-E E = D

Any number of parentheses may be used to indicate algebraic grouping.

EXAMPLE I Ib

A/IB X×C) - D- E E- A D
BC

EXAMPLE I Ic

(A/B X(C - D))-E -E (C - D)

EXAMPLE I Id

A)(A /(B X (C -D))) - E E =-
B(C - D)

The normal rules of arithmetic precedence are strictly observed,
i. e., exponentiation (shifting) is performed first, multiplications and
divisions second, and additions and subtractions last. This precedence
is applied successively to each group from innermost to outermost
(Examples l c, d). Computations on the same precedence level (e.g.,
multiplication and division) are performed from left to right (Exam-
ples Ila, b).

Intermediate results during a computation may be stored in the
following manner:

EXAMPLE 12

(A + B- C) / (E - F- D)-.G

Example 12 is arithmetically the same as:

12

NAVWEPS REPORT 8044

A+B-C, E- F'D, C/D-.G

Fixed-point expressions may be shifted right or left n places by
the symbols / 2tn or X 2tn. The U-490 left shift is circular, while
the right shift is not, although it does employ sign extension. It is ex-
tremely important to recall these two shifting characteristics when
programming the U-490.

The number of places to be shifted, n, may be a fixed-point con-
stant, an index-register variable, or a fixed-point variable name.

Modes of arithmetic (i. e., fixed and floating) should never be mixed
on the same side of the store symbol. When the two modes are sepa-
rated by this symbol, floating to fixed (or vice versa) conversion is
indicated.

EXAMPLE 13

(Assume that -- fixed pt-- is dimensioned as
fixed point and -- floating name-- is a floating-
point variable)

Fixed pt + K- floating name Floating-point representation of
the integer (fixed pt + K) is
stored in -- floating name--.

Floating name-. fixed pt The decimal fraction of -- floating
name-- is truncated and the in-
teger value is placed in -- fixed
pt--.

LOOPS

One of the most common digital programming techniques is the
iterative procedure or loop. A loop, in the NELIAC sense, is any
sequence of one or more steps of the algorithm that needs to be re-
peated.

There are two parts to a NELIAC loop: the sequence of steps to be
repeated, and the loop control, which regulates the number of times
the sequence is to be repeated.

Loop control is set up on an index register by listing the particular
register (i. e. , i, j, k, 1, m, or n) followed by an equality (=) symbol,
the beginning value that the register should have, the increment (or
decrement) of each step enclosed in parentheses, and the final value.
The steps of the algorithm, enclosed in braces, follow the loop control.

EXAMPLE 14

i = Beginning value (increment) final value ja[i]- b[i], c- d[i])

The execution of Example 14 can be characterized by the following
steps:

13

NAVWEPS REPORT 8044

1. Place -- beginning value-- in i.

2. Execute the steps within the braces.

3. Check i to see if it is equal to -- final value--. If it is, set i to
0, and go to the first step after the right brace; if not, add -- increment--
to i and go back to Step 2.

From this characterization, several important conclusions about
loops can be reached.

1. Every loop is executed at least once, since the test follows exe-
cution of the algorithm.

2. The index register must equal -- final value-- to obtain a normal
exit from the loop. Therefore, extreme caution should be used when
-- increment-- and -- final value-- are chosen, to insure that an equality
condition will exist at the correct time.

3. By choosing a negative value for -- increment-- and making sure
that -- beginning value-- is larger than -- final value--, a valid decre-
menting loop is possible.

4. Under normal exit conditions, the register used in the loop con-
trol is always set to zero. If, however, during the execution of the
loop, transfer outside the loop is made, the register will contain its
last value (see the section on Decision-Making, below).

Recalling the names used in Example 14, the following rules apply:

-- Beginning value-- may be an integer, a fixed-point whole or half
word (with subscript, if necessary), an index register, or an index
register * an integer.

-- Increment-- must be an integer (with a minus sign, if decrement-
ing is desired).

-- Final value-- is the same form as -- beginning value--. If it is
the number zero, decrementing is automatic regardless of the sign of
-- increment--.

EXAMPLE 15 (Valid Loop Controls)
i = k (2) k + 10 {..
j = ts[i] (1) 126{ . ..

Caution. Never index across zero on the U-490,
e.g., i=50 (-1) - 50

TRANSFER POINTS

At any point in the flowchart logic, the programmer may define the
name of a type of verb, called a transfer point, by entering the name
and folowing it with a colon.

14

NAVWEPS REPORT 8044

EXAMPLE 16

a + b-. c,

STORE C:

c-d-e, Store c.

This example would do the following:

1. Add a and b, and store the result in c
2. Store c in d and e
3. Transfer control to the first statement following the name

-- Store c-- (which, for this example, has set up an infinite
loop, a highly undesirable program characteristic)

Considering Steps I and 2, of Example 16, the definition of a name
obviously does not interrupt the logical flow of the algorithm. It does,
however, give the programmer a method of referring to a specific
point in the flow.

Note that the punctuation following the usage (not definition) of
-- Store c-- is a period. It acts as a comma normally does, except
that it sets up an unconditional transfer to the address of the name
--Store c--.

DECISION- MAKING

There are six basic decisions that NELIAC can make about two
variables of a similar mode. They are

A=B A.?B

AJB A<B

A<B A>B

There is also one basic decision for fixed point variables only.
A < B < C (interval decision)

In addition to the above basic decisions, compounded decisions may
be formed by utilizing the Boolean "and" (n) and "or" (U) operators.
Up to 16 simple decisions may be strung together, provided only "ands"
or "ors" are used (i.e., no mixing of n and U is permitted).

The decision to be made is followed by a true and a false alternative.
The complete punctuation format looks like:

A= B: -- true alternative--; -- false alternative--;

The colon indicates the end of the decision and the beginning of the true
alternative (i. e., the steps that should be executed if A is equal to B).
The first semicolon indicates the end of the true alternative; the second,
the end of the false alternative. In no case can both the true and false
alternatives be executed. If the statement of the decision (i. e., A = B)
is true, the true alternative is executed and control is automatically
transferred to the first step after the false alternative. If the

15

NAVWEPS REPORT 8044

statement is false, control is transferred to the false alternative (which
is then executed) and the program continues from the first step after
that alternative.

The period, used in the sense indicated in the section on Transfer
Points, will also end an alternative. In this case, it should be re-
called, control would be transferred unconditionally to the transfer
point and no return to the first statement after the false alternative
would be generated.

EXAMPLE 17 (Valid Decisions)

A& B n B < C f C k D: ; a- c; continue with flow
(If it is true that A < B < C > D, continue with flow; if not,
store a in c and continue with flow.)

X j Y: transfer pt 1. ; continue with flow (If it is true that
-X-fY unconditionally transfer to -- transfer pt I-- and
continue the flow from there; if not, continue the flow from
this point. The period indicates the end of the true alter-
native, and the semicolon is the end of the false portion.)

Z = GZZORK: True transfer. False transfer. (Both the
true and the false alternatives may be unconditional trans-
fers.)

Decisions may be nested (i. e., a decision in an alternative of a pre-
vious decision) as deeply as needed. For clarity, it is permissible to
enclose the whole true or false alternative in a set of braces when the
alternative contains at least one decision.

The following example demonstrates the nesting of decisions.

EXAMPLE 18

A = B : Z-.GZZORK, Q. Ix y: GZZORK-y; y-.GZZORK; A-'BI;

This may also be written as

A = B: Z-GZZORK, Q.

x y: GZZORK- y; y- GZZORK; A- B;

Arithmetic, including algebraic grouping, and bit handling may be
used on either side of a decision operator.

EXAMPLE 19

A X B + C-*D < E + F: true; false;

A X (B + C) < D (0-" 23); true; false;

For reference, a review of punctuation operator usage is included
in Appendix D.

SUBROUTINES

When a problem is being programmed, it is often desirable to set
off a section of the algorithm and designate it by a name. Then, when

16

NAVWEPS REPORT 8044

this section is needed, a simple listing of the name will be all that is
required. These sections are called subroutines and the process of
sectioning is called program partitioning. Some classic examples of
processes that are aually ade into subroutines are trigonometric
functions and their inverses, square root, sorting routines, and matrix
inverting routines.

The skeletonized format of a subroutine is shown below.

SUBROUTINE NAME: I --

The colon, as in the case of the transfer point, denotes the definition
of a verbal name. Braces enclose the steps of the subroutine.

There is no restriction to the number of subroutines that may be
programmed in a flowchart (i. e., a flowchart may consist of a main
routine and many subroutines, or it may consist of only one subroutine).

Normally, the nouns in a subroutine are entered in the dimension
statement of the flowchart. However, subroutines may also have a list
of nouns, enclosed in parentheses, that are common only to the sub-
routine. These nouns are called "dummy" variables because they are
the arbitrary (or changing) input or output nouns.

EXAMPLE 20

Suppose it is desired to write a subroutine that could compute the
sine of some angle, a . We would then want a to be a dummy variable,
since it would be a changing parameter. This subroutine 5 would be
defined in the following manner:

SIN (ALPHA): ----------

Suppose, further, that in the flowchart logic of the main program
(or another subroutine) it is desired to refer to this -- SIN (ALPHA)--
routine to compute the sine of a variable named -- Z--. This would be
called out by -- SIN (Z)--. The value of Z would be used in the compu-
tations everywhere that -- ALPHA-- originally appeared in the flow-
chart of SIN.

As many arguments (dummy variables) may be used as is desired.
However, those that are used in an output sense (i. e., those values
that are developed to return to the calling program) must follow the in-
put parameters and the two must be separated by a semicolon. At
least one input argument must exist if there are output arguments.

The list of dummy variables may be punctuated exactly as a dimen-
sion statement except for the semicolon separating input and output
variables.

In previous NELIAC literature, a function was defined to be a sub-
routine with associated parameters (i. e., a list of dummy variables).
This distinction is unnecessary, and is avoided, since the scope of this
report is confined to the usage of NELIAC.

17

NAVWEPS REPORT 8044

EXAMPLE 21

FUNCTION I (A, B, C; ID (0 -. 5)1): 1 -----
A, B, C are input dummy variables: partial word D is an output

argument.

FUNCTION 2 (1a(0- 5), B(10- 20)I (20) = 7, 10, c): .-

Twenty-one dummy cells are reserved by this argument list. Bits
O to 5 of the first 20 may be referred to as -- A--, while bits 10 to 20
are called -- B--. A [0]= 7; A [1] = 10; all other A's (and B's) are
zero. The 21st cell is named -- C--.

USE OF SUBROUTINES
There are two distinct ways a subroutine is used: as a noun, and

as a verb.

A typical example of usage as a noun is the aforementioned
-- SIN (ALPHA)-- routine, since it would be used in a fashion such as:

SIN (Z) X HYPOTENUSE - OPPOSITE SIDE,

When a subroutine is used as a noun, it is fairly obvious that the
computer must assume that the result of the subroutine will be in a
specific arithmetic register. If the programmer is unsure of where
the answer of a function is physically, he should end the function by
the simple store command

, answer - answer

This will insure that the proper values are correctly placed. The con-
vention for the U-490 is that the answer be in the Q register.

An example of a subroutine used as a verb may be found in Exer-
cise 2 of Appendix B. This problem requires that several blocks of
storage be sorted so that the contents of each are arranged in ascend-
ing order. As a result, a subroutine that could not be used in an
arithmetic statement is also required.

The concept of using a subroutine as a verb is precisely the same
as the usage of transfer points (see the section above on Transfer
Points), except that control is returned to the calling point. Since
this requires uniqueness in the CO-NO sense, the proper punctuation
following the subroutine name (in flowchart usage) is the comma (as
opposed to the period for transfer-point names).

EXAMPLE 22 (Valid Subroutine Usage)

A < B: SORT, B- A, Return to Start. A- B;

In Example 22, -- SORT-- is the name of a subroutine and -- Return
to Start-- is the name of a transfer point. If A were less than B, con-
trol would be transferred to the first location of that subroutine. When
the computations of the subroutine are completed, control is transferred
back to the calling point, -- B-- is stored in -- A--, and the control is
permanently transferred to -- Return to Start--.

18

NAVWEPS REPORT 8044

MACHINE CODE

NELIAC can accept machine code at any point in the flowchart logic.
The following are some examples of U-490 code:

10 0008 0 , (Clear q register)

26 0308 a, (Add the whole word -- a--)

14 0308 b [j- 1] , (Store in the whole word-- b [j-1I]--)

26 0308 165438 , (Add the whole word con-
tained in location 165438)

Each machine command must begin with the five octal digits cor-
responding to the f, j, k, and b designators followed by the octal sign.
At least one digit (or the name) of the operand must be listed, and
each command should be terminated with a comma.

Subscripting of the name of an operand is permissible. If both
subscripting and a non-zero b designator are written, the subscripting
takes precedence.

GENERATION OF OUTPUT ON THE
HIGH-SPEED PRINTER

The standard mode of output for scientific programs on the NOTS
U-490 is the on-line printer. Since input-output is not a part of an
ALGOL-type language (because it not only is machine-dependent but is
also installation-dependent), it has generally been left to the individual
programmer to do by utilizing the machine code capabilities of the
language. As an attempt to improve this situation, a general-purpose
subroutine named PRINT for output on the printer has been implemented.

PRINT has provisions for 31 arguments, the first of which must be
the name of a literal acting as the format. The following 30 arguments
should be the names of nouns to be output. These nouns are referred
to as the list.

THE FORMAT

Before the computer can set up a line of print for the printer, it
must be able to determine the form of the line. It does this by taking
the information specified by the literal in the argument, henceforth re-
ferred to as the format.

There are 128 print positions to a line on a UNIVAC printer. The
line may be thought of as composed of one or more adjacent fields. A
field consists of only one type of output, e. g., a Hollerith fieTa7r a
floating-point number field. Thus, if it was desired that a line of print
read

"The present value of theta is xx. xxx"
(where xx. xxx represents a variable floating-point number),

19

NAVWEPS REPORT 8044

it would be broken into a Hollerith field followed by a floating-point
field.

FIELD SPECIFICATION

Numerical fields are specified by the letters I, F, or E. An I
field specifies a fixed-point integer to be output; F and E are designa-
tions for floating-point nouns. The difference between E and F is that
an F-type outputs the number as a decimal while E-types appear as
exponential forms (of ten).

The precise specification of the number fields is as follows:

1w, Fw.d, Ew.d

where
w = field width
d = number of desired decimal places

Each I, F, or E specification must be followed by a comma.

EXAMPLE 23

CR
LC
5
CR
A = 12,
B(2) = 22.222222, -6666.666,
[FORMAT 1: 120, F16.3, E13.5,];
PRINT(FORMAT 1, A, B[0], B[1]), .. (stop code)

The preceding example would print this line:

18 blanks 10 blanks r-sign position
4 - 12 - 9 22.222 -6.66666E 0 3

Note that the decimal point is included in w, as is the sign. In the ex-
ponential type, four extra positions for "E sign xx" must be included in
the Width count.

There also exists the capability of repeating a numerical field by
using

nlw, or nEw. d, or nFw. d

EXAMPLE 24

As suming

[FMAT 2:3120,] and A(3) = 12, 13, 14

then

PRINT(FMAT 2, A[0], A[11, A[2]) would give

18 blanks 18 blanks 18 blanks all blanks

20

NAVWEPS REPORT 8044

Alphanumeric fields are specified by the symbols

which are often referred to as "quotation marks" to clarify their use.
All alphanumeric characters, which are available on the high-speed
printer, and are contained within the quotation marks, will be printed
precisely as written except for two or more consecutive spaces. All
consecutive spaces, except for the first, are omitted.

EXAMPLE 25

If the literal is

[FORMAT 3: < THIS IS ALPHANUMERIC INFORMATION.>]

and PRINT (FORMAT 3) is used, the following line results:

all blank to edge of paper

THIS IS ALPHANUMERIC INFORMATION.-

Blank fields (in addition to the method shown in the section on nu-
meric afields)-may be generated as by the following symbology:

Inl, where 1 __ n < 127

The number n specifies the number of blank spaces to be inserted.

The end of a line of print may be signified by a solidus (/). This is
normally used prior to the physical end of the format. The end of the
format (regardless of the last punctuation) terminates the loading of
the printing buffer, and outputs that buffer. Thus, if a slash (/) were
the last character in the format, the buffer would be printed, and the
end of the format would again cause the buffer to be printed, thus
giving a blank line.

Blank lines can be generated by one two techniques. The first is
the use of multiple slashes, such as "////". Since the slash indicates
the end of a line of print, this notation would

1. Print the last line generated
2. Generate three blank lines

Note that if these are the first symbols in the format, they would effec-
tively give four blank lines.

The second method of generating large quantities of space is by use
of the exponentiation arrow (T). This symbol does the same thing as
the slash but, in addition, causes the printer to move up to the top of
the next page.

21

NAVWEPS REPORT 8044

EXAMPLE 26

CR
LC
5
CR
A(5) = 1, 2, 3, 4, 5,
[FMAT 4: 1101 < A(0) = > Ii,//101 < A(') = > I',1101

<A(Z) = >1I, t < A(3) = > II, < A(4) = > 11,];
PRINT(FMAT 4, A[O], A[1], A[2], A[31, A[41), .. (stop code)

This example would print the following:

4-line margin I (Page 1)

10 blanks
1-line blank - A(O)=I

.- A(lI)=2

Rest of page

blank

((Page 2)
4-line margin A(3)=4A(4)=5

MISCELLANEOUS INFORMATION

Since the end of the format generates a line of print, a new line
will be printed the next time PRINT is used. Therefore, there is no
possibility of overprinting on the previous line.

Because of the amount of time required for a print cycle, a program
will be executed faster if only single lines are generated in PRINT (al-
though blank lines require essentially no time to print). By doing this,
and by placing a portion of the algorithm between the PRINT calls when
possible, the programmer will maximize the buffering capability of the
machine.

22

NAVWEPS REPORT 8044

There are 66 possible lines of print on the paper used in the printer.
PRINT will automatically leave a top and bottom margin of four lines
each, leaving the programmer with 58 possible lines per page.

THE NOUN LIST

The only limitations placed on the list of names following the format
name in the argument of PRINT is that they be defined nouns, and that
the total number not exceed 30. However, since floating-point nouns
require two addresses, the list may have to be as short as 15 nouns.

AVAILABLE GENERAL-PURPOSE SUBROUTINES

The subroutines in this section are common only to the U-490 at
NOTS and are not a part of the actual NELIAC compiler.

OPEN SUBROUTINES

These routines are termed open since the machine code of each is
inserted in the object (machine -7-de) program each time they are re-
ferred to in the source program (flowchart).

These routines must be punctuated precisely as shown (except for

spacing).

[PAUSE < -- transfer point name- - >,],

-- Pause-- will cause the machine to transfer to the -- transfer point
name-- and stop. When the high-speed switch is depressed, the next
instruction to be executed will be located at the acdress associated
with -- transfer point name--.

[STOP <,],

-- Stop-- differs from -- pause-- only in the sense that no more instruc-
tions in the program may be executed once -- stop-- has been encoun-
tered. This is the normal method of ending a NELIAC program.

CLOSED FUNCTIONS

The following general-purpose arithmetic functions are available to
the programmer. All arguments are floating-point variables.

1. SINF (ARG). Computes sine, includes COSF.

2. SECF (ARG). Uses COSF, computes secant.

3. CSCF (ARG). Uses SINF, computes cosecant.

4. LOGF (ARG). Computes natural log of ARG.

5. EXPF (ARG). Computes e to ARG.

6. TANF (ARG). Computes tangent.

23

NAVWEPS REPORT 8044

7. COTF (ARG). Computes cotangent using TANF.

8. ASINF (ARG). Uses SQRTF and ATANF, computes arcein
Between -PI/2 and +PI/2.

9. ATANF (Ordinate, Abscissa). Computes arctan between -PI
and +PI.

10. ACOTF (Ordinate, Abscissa). Uses ATANF, computes arccot
between -PI and +Pi.

11. ABSF (ARG). Finds absolute value of floating-point variable.

12. SQRTF (ARG). Computes square root of positive floating-point
variable.

13. SOLVPOLYEQ. Uses SQRTF, finds roots of a polynomial
equation.

14. SOLVDE. Solves system of ordinary differential equations.

15. SLVEQ. Solves linear equations.

16. EVALMATRIX. Gives rank, determinant, and inverse of matrix
and solves a system of linear equations.

17. TIME THIS SUBROUTINE. Times subroutine using real-time
clock.

18. SR INTEGRATION. Simpson's rule integration.

19. LAQ INTEGRATION. Uses EXPF, integration by Gauss-
Legendre guadrature.

20. LEQ INTEGRATION. Integration by Gauss-Laguerre quadrature.

24

NAVWEPS REPORT 8044

Appendix A

CO-NO TABLE

,; :) [<I = >< > -+ /p x u n
4 I sot I 6 111 0 0 o i is 0 o o I s i II I IT g, * 1 0 0
4s " 6 4l "I 0 t oI I s of i s of I s of II II #I IT I; a 1 0

4 w 6 4 s * fitS Io is to to o Se S I I IT 3 0 0 * I
* S S I 05 6 I P S IS 59 50 0 5 IS 5 II II IS N I S S I5 0

SO 9 5 6 4 9) 1 of o 0 o o o to of I IT 11 0 0 my a
(# 0 6 5 Is 0 p 0 0 0 0 a 0 0 T T 09 13 1 ai 0 0 5

) 0 a o 9 1 S 1) o #1 1 9 1 9 9 9 t 9 6 5 o i i 4 o 0 9

4 0 0 0 0 0 I a 0 a as 0M 0 5 0 0 S

0 0 0 0 0 0 O 6 0 0 O 0 1 0 0 a 0 0 5 5 0

I 4 l 0 6 4 t) 05 O O 5 0 S O t 0 i o o is I* t i IS I? 0 S 6 5
I I ~ 0 9 i6 ! p I5 S IS IS O S 0 5 Ii I I IT I S O O

0 0 0 0 0 0 0 0 a I I I I 1 0 1

,. o o ., O . . o o . o . .< o 0 1 1P 1 1 1 0 0 0 o .

to 19 It 59 I 9 it I 0 0 19 I 59 9 9 19 59 It It 9 5 9 It 9 5 0 9 19

+ I 1 0 " 6 11T 11) p I Is to I $0 to 0 1o t 0 II 5 11 IT 0 0 II IS "
.O 4 Is II of U 5 aI I It I to to I of i of I 1?) O Is is

0 0 O 5 14 p 0 0 N 55 16 6 56 56 16 6 5 6 14 N 0 6 1

X S 0 0 is 6 is 1) S 5 0 is is is is is is II is is is is 5 0 Is is

p 5 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 5 0 0 0 6 05

U 9 0 0 a 0 0 0 o i s 5 t o 5 is5 1 5 o Ii 0 a IU 0 5 6 0 p * O O O* 0 * O* *0 O* O O O O? S S O O

fl 0 0 0 6 5 0 0 0 O O S 0 O 0 0 55 i 0 S 57 0 0 0 0 0

n It o o It o n It o o t o is is t o I o is is it it I * o 9 o

0. Fault 15. Generate mult or enter
1. Initiate relation control 16. Generate divide
2. Fault 17. Generate div or enter
3. Generate straight jump 18. Generate div quant
4. Generate return jump 19. Generate store
S. Check partial word 20. Initiate loop control
6. Check for algebra 21. Set exit conditions
7. Check for neg loop increment 2. Generate 1O
8. Check for loop limits 23. Initiate subscript
9. Clear temp list 24. Modify subscript

10. Generate add or enter 25. Set subscript
11. Generate add 26. Save current operator
12. Generate subtract 27. Generate add or enter
13. Generate multiply 28. Initiate relation control
14. Generate mult quant 29. Generator exit

This table is included as a guide to the legal CO/NO pairs. The numbers given
at the intersections specify which generator routine manufactures the machine code
instructions pertinent to that pair. In general, if no number is given, that CO/NO
pair is illegal. Some special cases, such as shifts or octal notation, are processed
elsewhere and do not appear at all.

25

NAVWEPS REPORT 8044

Appendix B

EXERCISES

EXERCISE I
Write a complete dimension statement that will do the following:

1. Define the fixed-point cells Xl, X2, .. , X6.
2. Define the floating-point vector X[o, X[] .., X[5].
3. Define the 200-celled vector, B, such that you can operate on

the whole word of each B[i], on the lower half of each B[i] (call
it B LOWER [i), on the upper half of each B[i] (call it B UPPER
[ib), oron A[i] = B[i + 100]for i = 0, 99.

4. Referring to part 3, show a method of insuring that all of the
B[i]= 0for i = 1, 2, and 4, 5, 199 andB[0]= 9, B[3]= 14.

5. Define the noun LOCATION to be the address of B[01 (i. e., the
number stored in LOCATION will be the address of B[0]).

EXERCISE 2
Assume that there are three arrays of 100 cells each (call them A,

B, and C) that have some number in each cell. Write a routine that
will sort the values in the three vectors in ascending order (do each
vector separately). See Fig. I for a typical flow diagram.

EXERCISE 3
Assume that there is no arithmetical division hardware available

for the U-490 and that we need a subroutine to accomplish this arithme-
tic. One way of doing this (for left-justified, positive, fixed-point
numbers) is by the following algorithm:

I. Subtract the DIVISOR from the DIVIDEND.

2. If the REMAINDER Z 0, set qn = I (the nth bit of the QUOTIENT),
set the DIVIDEND x REMAINDER, shift the DIVISOR one bit to the right,
and go to Step 4.

3. If the REMAINDER is < 0, set qn = 0 and shift the DIVISOR one
bit to the right.

4. Have you done this process K + 1 times? If so, go to Step 5. If
not, go back to Step I after making n a n - 1.

S. If DIVIDEND - DIVISOR is > 0, add I to QUOTIENT and then end
the routine.

In this algorithm, the initial value of n would be K, the number of times
we must go through the process.

26

... NAVWm RW@RT l':

FIG.1. Tpica Flochar forSortngdEeens of ne Vetr

____I

5"1 5" 1 TMP. STORAGE -]:

i U + 11

Assume that in K there is a value (<30), and the fixed point numbersDIVIDEND and DIVISOR that are left-justified to each other (i. e., the
first bit in DIVIDEND that is a 1 is also a I in the corresponding posi-
tion of DIVISOR and vice versa). Write a subroutine that has DIVIDEND,DIVISOR, and SIGN FLAG as input variables and QUOTIENT as an out-
put parameter that will do the indicated division. After the division is
completed, set QUOTIENT negative if SIGN FLAG is pI 0.

EXERCISE 4

rIN
I-IsiG 1. get Tyia tlwhate fororing Eleomntiofne Vecor

sin - x
2

is good to eight places:

6 Hstings, Cecil, 3r., Jeanne T. Haywardo and Jamas P. Wog, Jr.
DIIOR, an SoG FLAinputva Princeton, N. ., Princeton
pu t r e t ld. -- tr t

copetd se UTETngtv1i INFA sJ0

NAVWEPS REPORT 8044

sin- x= Cix + C 3 x3 + C5 x5 + C7x7 + C9 x9

2
where

C1 = 1.57079,631847 C7 = -0.00467, 376557
C3 = -0.64596, 371106 C9 = 0.00015, 148419
C5 = 0.07968, 967928

Write a function that will have the floating-point variable Z as its
argument so that it will compute sin Z. Note that

2
x=- Z

7ir

Will the subroutine be good to eight places?

EXERCISE 5

Two positive fixed-point numbers are said to be left-justified with
respect to each other when the smaller is shifted left until the first 1
bit in it is in the same position as the first I bit in the larger, e.g.,

LARGER = 00110 100 10
SMALLER = 0000100111

SMALLER requires two left shifts to be left-justified to LARGER.

Write a function that will do the following:

1. Accept as inputs the variables LARGER and SMALLER such that
ISMALLERI < ILARGERI.

2. Have as an output the variable SIGN FLAG that will be 1 if, and
only if, either SMALLER or LARGER is negative (but not both negative):
otherwise SIGN FLAG = 0.

3. Set the inputs positive if they are negative and left-justify
SMALLER to LARGER.

4. Count the number of shifts required to make the justification and
have that number available in the K register when you exit from the
routine.

A suggested flowchart is shown in Fig. 2.

EXERCISE 6

Assume 100 values in each of the fixed-point vectors A and B, and
100 values in the floating-point vector C. Write a program utilizing
Exercises 2 to 5 as subprograms, which will do the following:

1. Sort A and B in ascending order.
2. Compare the JAil to jBil for i = 0, 99. If Ai2>Bi, justify

Bi to Ai and divide B into A using the K developed in Exercise 5

28

NAVWEPS REPORT 8044

SIGN FLAG-K

NO LARGER),E
"LARGER

I SIGN FLAG

{SMALLER < 0 --1E

NO -SMALLER-SMALLER.
SIGN FLAG + IM SIGN FLAG

SIGN FLAG (0 - f 0)
SIGN FLAG LOOP CONTENTS

S/LARGER/:' f I1
0 LOOP CONTROL ,. LARGER

SMALLER21

L I(I)MSMALLER ,

LER×, Z 8) N

I~~ SMALLERR

I I +*I -M

FIG. . Suggested Flowchart for Exercise 5.

to be the needed K in Exercise 3 and store QUOTIENT in the re-
serve matrix Ei, making sure that Ei has the correct sign by

utilizing SIGN FLAG. If Ai<Bi, find the sin(Ci) and store it in
the reserve matrix Di.

EXERCISE 7
Utilizing the sine function in Exercise 4

Wsin x
coosZ = sin xwhen Z = - - x, and tan x =

2 Cos x

generate a complete trigonometric table from 0 to 0.78S radian (i. e. ,
w/4) at intervals of 0.001 radian. Print out all parameters to five
decimal places. Make the top line of the first page (in the center)
"TRIGONOMETRIC TABLES," leave three blank lines and head seven

29

NAVWEPS REPORT 8044

columns with THETA, SIN, COS, TAN, COT, SEC, CSC. Skip one
line and then list the answers so that the rightmost decimal places fall
directly below the rightmost letter in the heading. List all future rows
in single spacing.

Caution: COT and CSC are not defined at 0.

30

NAVWEPS REPORT 8044

SOLUTIONS TO EXERCISES

5(COMMENTS EXERCISE 1)

Xl, X2, X3, XI+, X5, X6,

X(6).

Bt [B UPPER(15-29), B LOWER(O-1I+)) (1O0)= 9,,,14,

A(l()),

LOCATION = { B];..

5 (COMMENT: EXERCISE 2)

[FMAT: 2120,),

A(l(X), B(l(X)), TEMP STORAGE,

[LOCATION OF A(0-14)j = (A), [LOCATION OF B(O-1')= [B];

SORT(LOCATION OF A), SORT(LOCATION OF B),

I = 0(1)99[PRINT(FMAT, A[I], B[I]),,

[STOP<,],

SORT(ADDRESS OF VECTOR):

(ADDRESS OF VECTOR -* K,

I = K + l(l)K+99[[I1 -. TE4P STORAGE, I - 1 -J

TEST FOR POSITIONS

TEMP STORAGE C [J1: TEMP STORAGE -. (J + I];

([J - [J + ii, 1 9 ADDRESS OF VECTOR: - I J,

TEST FOR POSITION. TEMP STORAGE - [K;];],]..

31

NAVWEPS REPORT 8044

5(COMMENTS EXERCISE 3)

REMAINDER ;

DIVIDE(DIVIDEND, DIVISOR, SIGN FLAG ; QUOTIENT):

[0 - QUOTIENT,

I = 0(')K [DIVIDEND - DIVISOR -. REMAINDER 2 0 :

REMAINDER -. DIVIDEND, QUOTIENT x2tl + 1 -. QUOTIENT ;

QUOTIENTx2tl - QUOTIENT; DIVISOR /2tl -. DIVISOR, 9

DIVIDEND - DIVISOR > 0 3 QUOTIENT + 1 - QUOTIENT ; ;

IF SIGN FLAG / 0 : -QUOTIENT -* QUOTIENT ; ;

5(COMMENT: EXERCISE 4)

Cl(5) = 1.5707963, -0.64$596371, 0.07968968,

-0.01+67377, 0.(Xx)1 511+8,

SuIN Z. X1. XISQUARE. TIWO DIV BY PI = 0.63661977,

IISTORE ;

(COMMENT: TEMPORARY NAMES USED SINCE THIS IS A

GENERAL PURPOSE FUNCTION.)

SIN(Z.):

f i -. ISTORE, Z x TWO DIV BY PI - X , XxX - XSQUARE ,

)-. SIN Z,

I =)+(-l)I (SIN Z + CCIi) x XSgUARE SIN Z, 3
ISTORE - i

(SIN Z + C[O]) x X - SIN Z , SIN Z - SIN Z, I

32

NAVWEPS REPORT 8044

5 (COMMENT: EXERCISE 5)

JUSTIFY AND FIND DIV SIGN(LARGER, SMALLER ;

SIGN FLAG, LARGE, SMALL) t

0) -. SIGN FLAG - K,

LARGER <) : -LARGER - LARGER , 1 -. SIGN FLAG ; ;

SMALLER <) : -SMALLER -. SMALLER , SIGN FLAG + I

- SIGN FLAG , SIGN FLAG () - 0) -* SIGN FLAG ; ;

0 -. M , LARGER(28 -. 28) o t s JUSTIFY SMALLER. ;

JUSTIFY LARGER :

LARGER x2tl -. LARGER , M + 1 - M ,

LARGER(28 -* 28) = : JUSTIFY LARGER.

L = 1(1)M[LARGER/2tI -. LARGER , SMALLER x2tl -* SMALLERI,

JUSTIFY SMALLER :

SMALLER(28 - 28) =) : K + 1 -. K ,

SMALLER x2t1 -. SMALLER, JUSTIFY SMALLER .

K /) : L = 1(1)M I SMALLER /2tl - SMALLER ,},;;

SMALLER - SMALL, LARGER - LARGE , .

33

NAVWEPS REPORT 8044

(COMMENTs EXERCISE 6)

A(00), B(000), C(IOW). D(O(X). E(100),

TEMP STORAGE,

[LOCATION OF A (0 - 14) } - [A),
[LOCATION OF B (0 - i)) - 1 [B },

SIGN FLAG ;

MAIN PROGRAM :

SORT(LOCATION OF A),

SORT(LOCATION OF B),

I=(1)99[ABSF(A[I]) > ABSF(B[I])

JUSTIFY AND FIND DIV SIGN(A[I], B[I] ;

SIGN FLAG, A[I], B[I]),

DIVIDE(A[I], B[I1 , SIGN FLAG ; E[I]), ;

SIN(C[I]) -, D[I] ;},

[STOP<,],

ABSF(ARG):

[IF ARG < 0 10 + (; ; ..

34

NAYWEPS REPORT 8044

5 (COMMENTS EXERCISE 7)

COSINE. P. Q.

PI OVER 2 = 1.5707963,

[FORMAT$1 a 1 +1 <TRIGONOMETRIC TABLES>////I 11+ <THETA> I 151

<SIN>1151<COS>1151<TAN>1151<COT>1151<SEC>1151<CSC>/,

[FMAT 2s F19.5, 3F18.5, F36.5,,

[FMAT 3: F19.5, 6F18.5,1,

H = 0.001,

SIN X. COS X. TAN X. COT X. SEC X. CSC X.

PRINTING EXERCISE:

PRINT(FORMAT 1) ,

0.0 - P - SIN X - TAN X, 1.0 - COS X - SEC X,

PRINT(FMAT 2 , P, SIN X, COS X, TAN X, SEC X),

I=1(1)785[P + H - P, SIN(P) -. SIN X, COS(P) -. COS X,

SIN X / COS X - TAN X, 1.0 / SIN X -, CSC X ,

1.0 / COS X-SECX , 1.0/ TANX-COTX

PRINT(FMAT 3, P, SIN X, COS X, TAN X,

COT X, SEC X, CSC X),},

[STOP<,],

COSCA.),

JPI OVER 2 - A -9 , SIN(Q) -' COSINE ,}..

35

NAVWEPS REPORT 8044

Appendix C

NELIAC INTERNAL CODE

Octal Char- Decimal Octal Char- Decimalacter acter

00 Space 00 40 5 32
01 A 01 41 6 33
02 B 02 42 7 34
03 C 03 43 8 35
04 D 04 44 9 36
05 E 05 45 2 37
06 F 06 46 38
07 G 07 47 39

10 H 08 50 40
11 I 09 51 41
12 3 10 52 (42
13 K 11 53) 43
14 L 12 54 [44
15 M 13 55 45
16 N 14 56 { 46
17 0 15 57 1 47

20 P 16 60 = 48
21 Q 17 61 49
22 R 18 62 > 50
23 S 19 63 < 51
24 T 20 64 < 52
25 U 21 65 > 53
26 V 22 66 -0 54
27 W 23 67 + 55

30 X 24 70 - 56
31 Y 25 71 / 57
32 Z 27 72 X 58
33 0 28 73 Not used 59
34 1 29 74 I 60
35 2 30 75 U 61
36 3 30 76 n 62
37 4 31 77 t 63

36

NAVWEPS REPORT 8044

Appendix D

REVIEW OF PUNCTUATION

A discussion per se of the six punctuation operators

, ; . .'I
has been omitted intentionally from the foregoing text since it is felt
that correct usage of punctuation is largely dependent on the understand-
ing of the CO-NO operations and not simply on the memorizing of a set
of rules. However, it is often helpful to have such a set of rules avail-
able for reference.

COMMAS

The comma is often referred to as the universal separator since it
is used to indicate the end of an arithmetic sequence of steps. Commas
may be used with great freedom.

A comma may also indicate the call of a subroutine when the pre-
vious operator is also a punctuation symbol.

Example

SORT SUBROUTINE,

SEMICOLONS
The semicolons perform precisely the same operations as the comma

and can also indicate the end of a true or false alternative of a decision.

Example

A < B : SORT SUBROUTINE; A - B;

Since the semicolon does everything the comma could do, the comma
is unnecessary (although not illegal) after the subroutine call or the
store operation. This example could have legally been written as

A< B : SORT SUBROUTINE , ; A- B , ;

The semicolon is also used to separate input and output parameters
in the list of arguments of a subroutine.

PERIODS

The period has all the properties of a semicolon (except as an input-
output separator in the list of dummy variables for a subroutine) and, in
addition, will generate an unconditional transfer when the previous
operator is a punctuation symbol.

37

NAVWEPS REPORT 8044

COLONS

The colon has two uses. When it is preceded by a punctuation sym-
bol, it indicates the definition of the name of a transfer point. When it
is preceded by a decision operator, it signifies the beginning of the
true alternative.

Examples

, THIS IS A TRANSFER POINT: (Definition)
, A < B : A - B (Beginning of true alternative)

BRACES
Left and right braces are used as grouping symbols. They can en-

close:

1. An entire true or false alternative
2. A loop
3. A subroutine or function

The braces have all the powers of a comma.

Example

i = 0 (I) 10 A[i]- B [i]I (Right brace acts as
a comma as well as
ending the loop)

38

NAVWEPS REPORT 8044

Appendix E

DEBUGGING AIDS AVAILABLE FROM
THE NELIAC COMPILER

As NELIAC compiles a program, it lists the grammatical errors in
the form of a program diagnostic on the operator's console. NELIAC
will attempt to compile all of a flowchart regardless of previous errors.
Although the program produced will probably be useless (if an error is
diagnosed), this will minimize the number of compilation attempts
needed to produce the first grammatically correct flowchart.

Errors will be categorized into one of the 14 diagnostic statements
listed below. Obviously, there will be instances in which these diag-
nostics are slightly misleading and the programmer will need to de-
velop a kind of sixth sense about them.

Diagnostic Statements From the Compiler

1. SHORT WORKING SPACE.
2. CAUTION, FOLLOWING NAMES UNDEFINED.
3. UNDEFINED ROUTINE, JUMPED TO FROM xxxxxx 8 (xxxxxx 8

will be the object program location).
4. STRAIGHT JUMP TO SUBROUTINE.
5. ILLEGAL CO/OPERAND/NO (followed by the flowchart in which

it appears).
6. ILLEGAL DIMENSIONING STATEMENT, PROBABLY FORGOT;
7. NAME LIST OVERFLOW (maximum of 10008 names for any set

of flowcharts).
8. MISSING ALTERNATIVE.
9. TREATED AS FULL WORD FIXED POINT.

10. -- NAME-- USED TWICE. (--NAME-- is a doubly defined noun
or verb or a noun and a verb.)

11. MACHINE CODING FAULT.
12. MISSING BRACE.
13. TOO MANY UNDEFINED NAMES. (Too many nameshave been

used pirevious to their definition; the maximum allowable is 128).
14. CORE EXCEEDED.

Once a flowchart has been compiled, there is always a distinct
possibility that the programmer made logical errors that invalidate
the results. Thecompiler has three forms of output to assist him
in finding these errors:

1. Name List. The list of all names (nouns, transfer points,
functions and subroutines) and their corresponding absolute
addresses in memory for use with the machine code dump.

39

NAVWEPS REPORT 8044

2. Machine Code Dump. Any part (or all) of memory can be
dumped in octal through the compiler. The machine code
generated by NELIAC can be obtained in this manner.

3. NELIAC Dump. The compiler can edit the original flow-
chart and output the edited version through the high-speed
punch or printer. This version will be a much more read-
able form than the original.

40

NAVWEPS REPORT 8044

Appendix F

INITIAL NOTS CONFIGURATION OF THE U-490

In the NOTS version of the UNIVAC 490, there are 16,376 locations

for storage of 30 bits each.

Peripheral equipment for the U-490 consists of four magnetic-tape
transports, a high-speed printer, a typewriter, and a high-speed paper
tape unit (which reads or punches a tape). In addition, there are off-
line Flexowriters available for manual preparation of paper tapes.

Output from the computer is in one of the following four forms:

1. Printing from the high-speed printer
2. Magnetic tapes
3. Printing on the typewriter
4. Paper tape from. the high-speed punch

In general, the first of these represents the normal mode for
general-purpose, scientific programs.

There are three normal modes of input:

I. Paper tape that was manually prepared on an off-line Flexo-
writer or that was an output (via the high-speed punch) from a pre-
viously run program.

2. Magnetic tape that was previously prepared by a U-490 program.
Note that there will be no way of preparing a magnetic tape except
through the computer.

3. Manual entry through the typewriter on the console.

The normal mode of input for scientific problems is the manually pre-
pared paper tape (Item I, above).

41

NAVWEPS REPORT 8044

INITIAL DISTRIBUTION

5 Chief, Bureau of Naval Weapons
DLI- 31 (2)
R- 14 (1)
RU (1)
RUTO (1)

I Chief, Bureau of Ships (Code 560)
1 Chief of Naval Operations
2 Chief of Naval Research

Code 104 (1)
Code 466 (1)

1 David W. Taylor Model Basin
I Naval Air Development Center, Johnsville
I Naval Ordnance Laboratory, Corona
2 Naval Ordnance Laboratory, White Oak

Library, Dr. S. J. Raff (1)
1 Naval Postgraduate School, Monterey (Library, Technical Reports

Section)
2 Naval Research Laboratory

Code 5550 (1)
1 Naval Torpedo Station, Keyport (Quality Evaluation Laboratory,

Technical Library)
1 Naval Underwater Ordnance Station, Newport
I Naval War College, Newport
2 Naval Weapons Services Office
5 Navy Electronics Laboratory, San Diego

Code 1730 (2)
Code 2030 (2)

1 Navy Mine Defense Laboratory, Panama City
I Navy Underwater Sound Laboratory, Fort Trumbull

10 Armed Services Technical Information Agency (TIPCR)
I Scientific and Technical Information Facility, Bethesda (NASA

Representative S-AK/DL)
1 Applied Physics Laboratory, University of Washington, Seattle
1 Bell Telephone Laboratories, Murray Hill, N.J.
I California Institute of Technology, Pasadena (Library)
I Control Technology, Inc., Long Beach (A. M. Bradley)
1 Hudson Laboratories, Columbia University, Dobbs Ferry, N.Y.
1 Jet Propulsion Laboratory, CIT, Pasadena (P.R. Peabody)
1 Ordnance Research Laboratory, Pennsylvania State University

(Development Contract Administrator)
1 Scripps Institution of Oceanography, University of California,

La Jolla (Document Control)
1 Woods Hole Oceanographic Institution, Woods Hole, Mass.

42

to 4
U)

E-4-
0 004 0 0 04

0. 44 .s V44

634
00 go 3 : 00

144 0 3

u,3 14 04 ,3 04

E4- A..

E 4) E' U

E ~~ *4:9

00

S0' 0~-

> >

00 %0 0 0 00
m Z.4 a,-

0' 04 0 0'
-o 34 u -

D . v 0.

w U .4a, Z

044
14 41

u 2)

004

44 E

*n 04~0

Z z

0 cn

14 l 4 r. N C

4) . 1U '

0 Ck) 4)

td) - to . .

>. 13 ~ 0 4 4

oc V 4.4
4) 4

0 4 0 d0044J
0 4.

&. E 4.

4- 54 , 4) E-.. 4

to U) - 'U) o
4 Id .% .1' 4

s4 t: o .1u) $4 04

-4 to4 - JF

44 1OU I 5 4 4) U1

E- 0 rn 1 4 U$4U
1$)u. .

z 3 .zuu~

